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Next generation computer-based environments are ever increasingly pervasive and
ubiquitous. Such interconnected device-based environments necessitate little or no human
involvement in the management loop. Self-* properties, or “selfware,” refers to current and
emerging behaviors exhibited by systems that are considered to be “autonomic” or inspired by
another view of self-management. We describe some emerging properties, which range from
self-adjusting to self-destruction. We describe the architecture required to create self-ware
and discuss the relationship between autonomicity and autonomy, and document some addi-
tional novel autonomic constructs inspired from biology for the next generation self-managing
environments.

I. Introduction

VARIOUS initiatives related to the development of self-managing systems have been proposed as means of
addressing issues in the development of complex computer-based systems. These initiatives include: Auto-

nomic Computing (IBM), Adaptive Infrastructure (HP), N1 (Sun), Dynamic Systems Initiative (Microsoft), Adaptive
Network Care (Cisco), Proactive Computing (Intel), Autonomic Networking (Motorola), and Organic Computing
(Fujitsu). A major focus has been on biologically inspired approaches, taking inspiration from the human body and
from nature. At the heart of this vision of self-managing systems is selfware, incorporating such self-* properties
as self-configuring, self-healing, self-optimizing, and self-protecting (often referred in shorthand as self-CHOP).
Achievement of this “selfware” is dependant on achieving system self-awareness and environmental awareness (self-
situation), implemented by means of a feedback control loop consisting of sensors and effectors within the computer
system to provide the self-monitoring and self-adjusting properties [1].

II. Selfware: Self-managing Software/Hardware/Firmware and Communications
IBM, upon launching their initiative, identified the computing industry’s main concerns as system complexity

and total cost of ownership (TCO). Their solution, viz. Autonomic Computing, was described as comprising of eight
elements [2]:

• Possess system identity—detailed knowledge of components
• Self-configure and re-configure—adaptive algorithms
• Optimize operations—adaptive algorithms
• Recover—no impact on data or delay on processing
• Self-protection
• Aware of environment and adapt
• Function in a heterogeneous world
• Hide complexity
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These eight elements can be expressed in terms of properties that a system should possess in order to constitute
autonomicity [3]. These are described in Sec. II.A and elaborated upon in Sec. II.B, which discusses the very
constructs that constitute these properties.

A. A Self-* and Autonomic Properties
The properties that a system should possess to constitute an autonomic system are depicted in Fig. 1 [2–5].
The general properties of an autonomic (self-managing) system can be summarized by four objectives: being

self-configuring, self-healing, self-optimizing, and self-protecting; and four attributes: self-awareness, environment-
awareness (self-situation), self-monitoring, and self-adjusting (Fig. 1). Essentially, the objectives represent broad
system requirements, whereas the attributes identify basic implementation mechanisms. Since the 2001 launch of
the Autonomic Computing initiative, the self-* list of properties has grown substantially [6–8], yet this initial set still
represents the general goal.

Self-configuring represents a system’s ability to re-adjust itself automatically; this may simply be in support of
changing circumstances, or to assist in self-healing, self-optimization, or self-protection. Self-healing, in a reactive
mode, is a mechanism concerned with ensuring effective recovery when a fault occurs, identifying the fault, and then,
where possible, repairing it. In proactive mode, it monitors vital signs in an attempt to predict and avoid “health”
problems (reaching undesirable situations). Self-optimization means that a system is aware of its ideal performance,
can measure its current performance against that ideal, and has defined policies for attempting improvements. It may
also react to policy changes within the system as indicated by the users. A self-protecting system will defend itself
from accidental or malicious external attack. This necessitates awareness of potential threats and a means of handling
those threats (Fig. 1) [3].

In achieving such self-managing objectives (Fig. 1), a system must be aware of its internal state (self-aware)
and current external operating conditions (environment aware). Changing circumstances are detected through self-
monitoring and adaptations are made accordingly (self-adjusting) [3]. As such, a system must have knowledge of
its available resources, its components, their desired performance characteristics, their current status, and the status
of inter-connections with other systems, along with rules and policies of how these may be adjusted. Such ability to
operate in a heterogeneous environment will require the use of open standards to enable global understanding and
communication with other systems [2].

These mechanisms are not independent entities. For instance, if an attack is successful, this will include self-healing
actions, and a mixture of self-configuration and self-optimization, in the first instance to ensure dependability and

Fig. 1 Autonomic computing properties with associated AE.
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continued operation of the system, and later to increase the self-protection against similar future attacks. Finally,
these self-mechanisms should ensure there is minimal disruption to users, avoiding significant delays in processing.

Other self-* properties have emerged or have been revisited in the context of autonomicity. We highlight some of
these briefly here.

self-* Self-managing properties, in some domains understood to indicate emerging behavior.
self-anticipating The ability to predict likely outcomes or simulate self-* actions.
self-assembling Assembly of models, algorithms, agents, robots, etc.; self-assembly is often influenced by

nature, such as nest construction in social insects. Also referred to as self-reconfigurable
systems.

self-awareness “Know thy self”; awareness of internal state; knowledge of past states and operating abilities.
self-chop The initial four (and generic) self-properties (self-configuration, self-healing, self-

optimization and self-protection).
self-configuring The ability to configure and re-configure in order to meet policies/goals.
self-critical The ability to consider if policies are being met or goals are being achieved (alternatively,

self-reflect).
self-defining In reference to autonomic event messages between Autonomic Managers (AMs): contains

data and definition of that data–metadata (for instance using XML). In reference to
goals/policies: defining these (from self-reflection, etc.).

self-governing As in autonomous: responsibility for achieving goals/tasks.
self-healing Reactive (self-repair of faults) and Proactive (predicting and preventing faults).
self-installing As in a specialized form of self-configuration—installing patches, new components, etc. or

re-installation of OS after major crash.
self-managing Autonomous, along with responsibility for wider self-* management issues.
self-optimizing Optimization of tasks and nodes.
self-organized Organization of effort/nodes. Particularly used in networks/communications.
self-protecting The ability of a system to protect itself.
self-reflecting The ability to consider if routine and reflex operations of self-* operations are as expected.

May involve self-simulation to test scenarios.
self-similar Self-managing components created from similar components that adapt to a specific task, for

instance a self-managing agent.
self-simulation The ability to generate and test scenarios, without affecting the live system.
selfware Self-managing software, firmware, and hardware.

B. Autonomic Element
Figure 2 represents a view of an architecture for an autonomic element (AE) that consists of the component

required to be managed, and the AM [7].
It is assumed that an AM is responsible for a managed component (MC) within a self-contained AE. This AM may

be designed as part of the component or provided externally to the component, as an agent, for instance. Interaction
will occur with remoteAMs (cf. the autonomic communications channel shown in Fig. 2) through virtual, peer-to-peer,
client-server, grid, or cloud configurations.

At the heart of the architecture of any autonomic system are sensors and effectors. A control loop is created by
monitoring behavior through sensors, comparing this with expectations (knowledge, as in historical and current data,
rules, and beliefs), planning what action is necessary (if any), and then executing that action through effectors. The
closed loop of feedback control provides the basic backbone structure for each system component [9]. Figure 2 high-
lights that there are at two conceptual control loops in an AE—one for self-awareness and another for environmental
awareness (self-situation).

IBM represents this self-monitor/self-adjuster control loop as the monitor, analyze, plan, and execute (MAPE)
control loop (Fig. 3) or MAPE-K (inc Knowledge). The monitor-and-analyze parts of the structure process information
from the sensors to provide both self-awareness and an awareness of the external environment. The plan-and-execute
parts decide on the necessary self-management behavior that will be executed through the effectors. The MAPE
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Fig. 2 An AE, including reflection and reflex layers.

Fig. 3 IBM view of an AE—the “MAPE.”

components use the correlations, rules, beliefs, expectations, histories, and other information known to the AE, or
available to it through the knowledge repository within the AM [9].

Figure 2 represents an AE mainly in agreement with this MAPE view, with exception in terms of the external
awareness control loop. This loop, in terms of sensing and effecting, can in general only effect through communication
(reflex signals or standard communications) that it has become aware of a situation requiring management in the
environment. This as in good software engineering practice is effectively designing in scoping rules. The AE can in
general only directly effect change in its MC. Logically, the MAPE implies that it can change the environment. By
implication, then because this is a distributed collaborative self-managing environment many individual MAPEs in
real time will spot the issue and effect change creating undesirable states.

As such the scoping rule is critical. That said, an AE may send a mobile agent (or even RPC) instead of the reflex
signal or event message to effect change, because this is a distributed environment and its scope may be wider than its
local MC, for instance, to implement a policy change or update passwords throughout the environment. Yet logically
this is still within its scope (distributed remit) and the receiving AE and environment still have final say as to if these
are implemented, i.e., passing security and “still in context” credentials before execution. As such, these are in effect
still self-managing communications but that also include the code “how to.”

C. Reflex Signal
The autonomic environment requires that AEs and, in particular, AMs communicate with one another concerning

self-* activities, in order to ensure the robustness of the environment. Figure 2 depicts that the AM communications
(AM ⇔AM) also includes a reflex signal. This indicates that certain situations may be too critical to relay on
standard event messages (that compete with the many other self-managing event messages residing on the system
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for correlation and action). It is also inspired by the biological autonomic nervous system (ANS), where the system
is subdivided into the sympathetic (SyNS) and parasympathetic (PaNS) nervous systems and tends to have opposite
effects: parasympathetic slows the heart rate whereas the sympathetic speeds it up. The sympathetic nervous activity
increases in response to fear, i.e., the “fight or flight” response, whereas the parasympathetic nervous activity acts
to calm, the “rest and digest” response. This biological sympathetic autonomicity may be used to inspire similar
mechanisms in the system-to create a reflex “flight or fight” self-configuration response when necessary. One approach
is discussed further in Sec. III.

D. Reflection
Although reflection is a slower response control loop, its inspiration to parasympathetic perhaps ends there.

Reflection technique is to allow the system to perform analysis computation on itself [10] (cf. the reflection component
within the AM shown in Fig. 2). In terms of an autonomic system, this is particularly relevant in order to allow the
system to consider the self-managing policies over time, and to ensure that they are being performed as expected.
This is acutely key because autonomicity involves self-adaptation to the changing circumstances in the environment
as well as to ensure the self-configuration, self-healing, self-optimizing and self-protecting are not just flip-flopping
over time between states.

E. Autonomy and Autonomicity at the System Level
These individual AEs collaborate together to create a self-managed environment, yet the collaboration approach is

often debatable and application specific: client-server, peer-to-peer, agent-based, SWARM, and so forth. We believe
the intent of the paradigm is at least peer-to-peer (localized handing of self-management issues instead of passing them
on to an element controller in a client-server environment) although often client-server self-management remains as
the application domain is such. Another debate is what constitutes autonomicity (self-management) and autonomy.
The following depicts a three-tier architecture we have found useful with clients when designing such systems.

A high-level perspective for an intelligent machine design is depicted in Fig. 4 (adapted from [11,12]). It describes
three levels for the design of intelligent systems:

1) Reaction—lowest level, where no learning occurs but there is immediate response to state information coming
from sensory systems.

2) Routine—middle level, where largely routine evaluation and planning behaviors take place. Input is received
from sensors as well as from the reaction level and reflection level. This level of assessment results in three
dimensions of affect and emotion values: positive affect, negative affect, and (energetic) arousal.

3) Reflection—top level, receives no sensory input or has no motor output; input is received from below.
Reflection is a meta-process, whereby the mind deliberates about itself. Essentially, operations at this level
look at the system’s representations of its experiences, its current behavior, its current environment, etc.

Input from, and output to, the environment only takes place within the reflex and routine layers. One may consider
that reaction level essentially sits within the “hard” engineering domain, monitoring the current state of both the
machine and its environment, with rapid reaction to changing circumstances; and, that the reflection level may reside
within the AI domain utilizing its techniques to consider the behavior of the system and learn new strategies. The
routine level may be a cooperative mixture of both (Fig. 4).

Fig. 4 Comparing intelligent machine design and system level autonomy and autonomicity.

119



STERRITT

This high-level intelligent machine design is appropriate for autonomic systems as depicted here because the case
has been made for the dynamics of responses including reflex reactions and also for reflection of the self-managing
behavior.

Some researchers hold the perception that autonomic computing resides solely within the domain of the reaction
layer. This is understandable due to the metaphoric link with the ANS, where no conscious or cognitive activity takes
place. These researchers would point to other biologically inspired computing (also referred to as nature-inspired
computing, etc.) as providing such higher level cognitive approaches for instance as in swarm intelligence. Within
the autonomic computing research community, autonomicity is not normally considered to imply this narrower view.
Essentially, the autonomic self-managing metaphor is considered to aim for a user/manager to be able to set high-
level policies, whereas the system achieves the goals. Similar overarching views exist in other related initiatives and,
increasingly, they are influencing each other.

In terms of autonomy and autonomicity, autonomy may be considered as being self-governing whereas autonomic-
ity is considered being self-managing. At the element level, an element will have some autonomy and autonomic
properties, since to self-manage implies some autonomy, while to provide a dependable autonomous element requires
such autonomic properties as self-healing along with the element’s self-directed task. From this perspective, it would
appear that the separation of autonomy and autonomicity as characteristics will decrease in the future and eventually
will become negligible except where it is useful to design and develop them as separate abstractions—the task to be
done (autonomy) and the capability to make sure it will happen (autonomicity).

At the system level if one considers again the three tiers of the intelligent machine design (reaction, routine, and
reflection) and accepts a narrower view of autonomicity, there is a potential correlation between the levels. That is,
the reaction level correlates with autonomicity, and the reflection level with autonomy, as in self-governing of the
self-managing policies within the system. The routine level will be a mixture of self-direction (actual application
goals) and self-managing (dependability and survivability goals). In the end, different classifications or different
perspectives on the matter will be academic unless they assist and inspire new means to achieve the self-managing
vision.

III. The Autonomic Environment and Extending the Self-* Properties
As has been highlighted, Autonomic Computing is a metaphor based on the biological ANS, taking the ANS

as inspiration to achieve self-managing computer-based systems without “conscious effort” from the user. Biology
can also inspire other constructs and properties for self-management to create a functional rich next generation
management system, some of these novel constructs are examined in this section. Section II highlighted the properties
and elements within an AE. For this self-managing environment to work, these AEs must communicate and cooperate
to ensure survivability and dependability as individual components will fail. Figure 5 depicts such an environment.
Although there is no requirement to insist an agent-based approach is utilized the need for cooperation and autonomy
makes a strong argument. With this view the AMs may be considered stationary agents and in addition to self-
managing messaging between the AMs (S∗ in Fig. 5) on the autonomic communications channel there may be
self-managing/autonomic mobile agents ( in Fig. 5) traveling between the AEs to facilitate the tasks of self-CHOP.

A. Reflex Signal: Pulse Monitoring and Lub-Dub Pulse Emission
Section II.C highlighted that the autonomic environment requires that AMs communicate with one another con-

cerning self-* activities (Fig. 2) depicting that AM ⇔AM comms also includes a reflex signal. This reflex signal
may be implemented through an extension of heart-beat monitoring.

Heat-beat monitoring originated from embedded systems, where instead of sending a reactive message once a
fault has occurred (which is typical in computer-based systems space) a message is sent when everything is okay,
i.e., “I am alive” signal from a chip (aka the heart-beat). The absence of this signal allows more proactive actions
to be taken. As the AMs and MCs are the key elements within the environment the actual manager’s (AM) internal
critical processes and MC itself may be protected with heart-beat monitors to detect immediate failure and initiate
failover or restart (Fig. 6).

By extension then the complete AM should be protected by an HBM emitting to a neighboring AM (peer-to-peer)
or north-bound (if in a hierarchy), so that if the AM fails self-managing responses can be induced including failover
to another AM.
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Fig. 5 A next generation autonomic environment.

Fig. 6 An Autonomic Environment, including HBM and PBM Lub-Dub.

Returning to our requirement for a reflex signal—because part of the AMs activity is to monitor their MC and the
environment they are able to assess the health of both and evaluate if an urgent situation is arising. As such, the reflex
reaction may be facilitated through modifying the heart-beat monitor to the novel pulse monitor (PBM) which has
the capability to encode health and urgency signals as a pulse [11] (i.e., from the regular emission of an “I am alive”
to “I am healthy” signal). Together with the standard event messages on the autonomic communications channel,
this provides dynamics within autonomic responses and multiple loops of control, such as reflex reactions among
the AMs [13] (Fig. 6).

This reflex component may be used to safe-guard the AE by communicating its health to another AE [14]. The
component may also be utilized to communicate environment health information [15]. For instance, in the situation
where each PC in an LAN is equipped with an AM, rather than each of the individual PCs monitoring the same
environment, a few PCs (likely the least busy machines) may take on this role and alert the others through a change
in pulse to indicate changing circumstances in the environment.

An important aspect concerning the reflex reaction and the pulse monitor is the minimization of data sent—
essentially only a “signal” is transmitted. Strictly speaking, this is not mandatory; more information may be sent,
yet the additional information must not compromise the reflex reaction. For instance, in the absence of bandwidth
concerns, information that can be acted upon quickly and not incur processing delays could be sent. The important
aspect is that the information must be in a form that can be acted upon immediately and not involve processing delays
(such as is the case of event correlation).
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Just as the beat of the biological heart has a double beat (lub-dub) the AE’s (Fig. 6) pulse monitor may have
a double beat encoded—as described above, a self health/urgency measure and an environment health/urgency
measure. These match directly with the two conceptual control loops within the AE, and the self-awareness and
environment awareness properties [16].

B. Autonomic Apoptosis (Self-Destruct)
It is believed that a biological cell knows when to commit suicide because cells are programmed to do so—self-

destruct (sD) is an intrinsic property. This self-destruction is delayed due to the continuous receipt of biochemical
reprieves. This process is referred to as apoptosis [17], meaning “drop out”, the process has also been nicknamed
“death by default” [18], where cells are prevented from putting an end to themselves due to constant receipt of
biochemical “stay alive” signals.

Further investigations into the apoptosis process [19] have discovered more details about the sD predisposition.
Whenever a cell divides, it simultaneously receives orders to kill itself. Without a reprieve signal, the cell does indeed
sD. It is believed that the reason for this is self-protection, as the most dangerous time for the body is when a cell
divides, as if just one of the billions of cells locks into division the result is a tumor, while simultaneously a cell must
divide in order to build and maintain a body.

The suicide and reprieve controls have been compared to the dual-key on a nuclear missile [20]. The key (chemical
signal) turns on cell growth but at the same time switches on a sequence that leads to self-destruction. The second
key overrides the sD [20].

Inspired by this biological mechanism, Autonomic Apoptosis (Stay alive) is proposed as an additional construct
used to safeguard the system and component/agent both in terms of security (including self-protection) in the
environment and from ones self (in case of incorrect adaptive behavior); the component (for instance an agent) has a
preprogrammed death by default and receives a reprieve (stay-alive) signal indicates that the agent is still operating
within a safe, correct context and behavior mode, and should not sD (Fig. 7) [21,22]. This approach is emerging as
an area referred to as Apoptotic Computing [23].

Fig. 7 also indicates (as a dotted line) a sD signal may be sent. This we refer to as weak Apoptotic Computing
because the preprogrammed death is triggered upon receiving an explicit sD signal as opposed to implicit default
death unless a stay alive signal is received (strong Apoptotic Computing) [23].

C. ALice Signal (Autonomic Licence)
An aspect to this research is that Anonymous Autonomous/Autonomic Agents need to work within the Autonomic

System to facilitate self-management; as such the agents and their hosts need to be able to identify each other’s
credentials through such means as an ALice (Autonomic License) signal [24]. This would allow a set of communica-
tions to ensure the visiting mobile agent has valid and justified reasons for being there as well as providing security
to the visiting agent in interaction with other agents and host (Fig. 8). An unsatisfactory ALice exchange may lead
to self-destruction for self-protection.

Fig. 7 An autonomic environment, including autonomic apoptosis; stay alive and self-destruct.
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Fig. 8 An autonomic environment, including ALice.

D. Autonomic Quiescence (Self-Sleep)
The biological cell cycle is often described as a circle of cell life and division. A cell divides into two “daughter

cells” and both of these cells live, “eat,” grow, copy their genetic material, and divide again producing two more
daughter cells. Because each daughter cell has a copy of the same genes in its nucleus, daughter cells are “clones”
of each other. This “twinning” goes on and on with each cell cycle. This is a natural process.

But there is a kind of “parking spot” in the cell cycle, called “quiescence”. A quiescent cell has left the cell cycle,
it has stopped dividing. Quiescent cells may re-enter the cell cycle at some later time, or they may not; it depends on
the type of cell. Most nerve cells stay quiescent forever. On the other hand, some quiescent cells may later re-enter
the cell cycle in order to create more cells (for example, during pubescent development) [25].

The agent self-destruction proposed earlier (Autonomic Apoptosis) to facilitate security measures may be con-
sidered an extreme or ultimate self-protection measure—for cases when the agent’s security has been breached or
the agent is endangering the system (for instance demonstrating undesirable emergent behavior) [21,22]. Yet, not
all cases may require this extreme reaction. Self-sleep (Quiescent state) [26] instead of sD (Apoptosis) may be all
that is required for certain circumstances. As the situation emerges and is clarified, the agent may resume its activity
or be put into an apoptotic state (Fig. 9). Strong/weak quiescence is akin to the strong/weak apoptotic process with
reference to stay awake versus self-sleep in Fig. 9.

IV. Related Work
Initially we applied these radical concepts such as apoptosis to future space exploration systems and specifically

to NASA’s ANTS (Autonomous NanoTechnology Swarm) [27] where potentially a swarm of thousands of adaptive
nano space craft would require such radical measures to ensure the success of an autonomous mission.

Fig. 9 An autonomic environment, including autonomic quiescence and stay awake.
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As it happens some of these constructs are also applicable to today’s systems and have been applied in the much
wider field of Autonomic Systems for instance to telecommunications, agent-based systems, biometric security
systems, grid, personal and pervasive computing [13,15].

Specifically, in the Space Exploration Systems field work is being channeled throughAA-SES series (Autonomous
and Autonomic Space Exploration Systems) of workshops with contributions to the field from NASA, Academia and
industry [28–31].

V. Conclusion
We have discussed emerging self-* properties, self-managing elements incorporating reflex and reflection layers,

along with the emerging standard components of self- and environmental control loops, and the necessary components
to provide the self-monitoring and self-adjusting properties.

The relationship ofAutonomous andAutonomic computing, framed in the context of an intelligent machine design
architecture with reaction, routine, and reflection layers, was also discussed.

We have summarized how the reflex reaction component—the pulse monitor—may be used to encode and transmit
health/urgency signals of the element (self) or the environment. We propose that like the heart with its double beat
(lub-dub) that the self and environmental values may be transmitted together.

We extended the properties for an autonomic environment by seeking further inspiration from biology, namely
Apoptosis (sD) and Quiescence (Self-Sleep).

Self-managing systems, whether viewed from the autonomic computing perspective, or from the perspective
of another initiative, offers a holistic vision for the development and evolution of next generation computer-based
systems that aims to bring new levels of automation and dependability to systems, while simultaneously hiding their
complexity and reducing their TCO.
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